Properties of Sin-Cos-Tan Functions

The sine and cosine functions take on y-values
between -1 and 1. 
Sine Function:
 y = sin x
     called a "wave" because of its rolling wave-like
          appearance (also referred to as oscillating)
     amplitude: 1  (height)
     period:  2π (length of one cycle)
     
frequency:  1 cycle in 2π radians [or 1/(2π)]
     domain:  
     
range:   

At x = 0, the sine wave is on the shoreline!
(meaning the y-value is equal to zero)


Cosine Function:
y  = cos x 
     called a "wave" because of its rolling wave-like 

      appearance
     amplitude: 1
     period:  2π
     
frequency:  1 cycle in 2 radians [or 1/(2π)]
     domain:  
     
range:   

At x = 0, the cosine wave breaks off the cliff!
(meaning the y-value is equal to one)



Tangent Function:
y  =  tan x

        domain: all real numbers except π/2 + k π, k is an integer.

        range: all real numbers

        period = π

       x intercepts: x = kπ  , where k is an integer.

       y intercepts: y = 0

       symmetry: since tan(-x) = - tan(x) then tan (x) is an odd function and its graph is symmetric with respect the origin.


        intervals of increase/decrease: over one period and from -
π/2 to π/2, tan (x) is increasing.

        vertical asymptotes: x = 
π/2 + k π, where k is an integer.














No comments:

Post a Comment